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Abs(rad. The stochastic evolution of adiabatic (slow) backpropagation mining of a neural 
network is discussed and a Fokker-Planck equation for the post-mining distribution 
function in the network space is derived. The distribution we obtain diEers h m  the one 
given by Radons ti d. Studying the character of the post-training distribution, we find 
that, except under very special circumstances, the distribution will be non-Gibbsian. The 
validity of the present approach is bled on a simple backpropagation learning system 
m one dimension, which can be snlved analytically as well. Implications of the Fokker- 
Planck approach for general situations are wmined in the local linear approximation. 
Surprisingly we h d  that the post-lraining dislribution is isotropic close lo its peak, hence 
simpler than the mrresponding Gibbs distribution. 

1. Introduction 

'haining neural networks is a stochastic process. The resuh of the training process, 
ie. the network weighfs, are stochastic variables depending on the specific, random 
training set and the possible stochastic dynamics of the search process. A recent study 
by Levin et d [l] on generalization in neural networks has focused attention on the 
post-training dsb-ibution of neural network weights, Le. on the stationay distribution 
for the given dynamics. It has been shown that essential information concerning the 
learning ability of specific model-domain complexes can be derived from appropriate 
distribution functions. Using analogies to lhermodynamk equilibrium, based on an 
assumed equivalence between maximum likelihood estimation and error minimization, 
Levin et a2 show that the post-training distributions are Gibbsim. It is of great interest 
to study to what extent their discussion applies to generic training schemes, such as the 
backpropagation supervised training scheme of feed-foward nets [2], and to see under 
which conditions the search process samples a Gibbs distribution with the training set 
error playing the role of energy. The standard implementation of backpropagation 
learning is a stochastic search algorithm; its stochasticity derives from partial updates 
based on a random sequence of examples. Learning dynamics, h general, is an active 
field of research. Soinpolinslo/ el al [3], in particular, have analysed a nonlinear 
perceptron in the thermodynamic (large-network) limit and found an interesting 
phase diagram for nets with discrete weights. The model investigated includes a 
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generic additive Gaussian white noise term. Such terms are a characteristic of 
thermal systems, Le. systems interacting with a heat bath, and they generate Gibbs 
distributions, with the variance of the noise term acting as remperurure. Additive 
thermal noise has also been studied by Hertz d a1 [4], who argue that this could 
model an unrelinble teacher. Radons er al [5J have studied backpropagation dynamics 
in terms of an approximate Fokker-Planck equation for post-training distribution in 
network space using the Kramers-Moyal expansion. 

In this communication we follow an approach similar to [SI, characteriziog the 
stochastic learning dynamics in terms of a master equation, and derive a Fokker- 
Planck equation of motion for the nehMrk distribution functions in the limit of 
slow training (i.e. small gradient descent parameter q). We, however, employ the 
established strategy of statistical physics, invoking a moscopic timescale, T, and 
anive at a Fbkker-Planck equation of the same form as Radons d a1 but with a 
modilied diffusion matrix. In principle, this equation can be used to study both 
relaxation dynamics and stationary solutions. We obtain here an expression for the 
stationary probability distribution which indicates that tbe general case is indeed non- 
Gibbsian; it becomes Gibbsian only when the covariance matrix of the backpropagated 
gradients is isofropic and indepcndent of the weights whose distribution is being 
sought This variance determines the diffusion matrix in our approach while in 
Radons er a1 the same is determined by the second moment matrix. For a problem 
with vanishing variance, our distribution reproduces the deterministic solution, while 
the distribution obtained by Radons er d continues to give a spread around the 
deterministic solution. In order to study the difference between the two versions of 
the Rklcer-Planck equation, and to expound the limiting process, we solve a simple 
1D linear learning problem in some detail. We fmd that our version of the distribution 
indeed complies with the exact solution. Proceeding then to the multivariate case, 
we study a student-teacher design and obtain local geometric properties of the peak 
of the stationary distribution. Surprisingly we find that the peak of the distribution is 
isotropic, hence much simpler than the corresponding Gibbs distribution. 

The paper is organized as follows: in section 2 we establish the basic master 
equation and deduce from it the appropriate Fokker-Planck equation. In section 3 
we illustrate our approach hy analysing a simple, exactly solvable, one-dimensional 
problem. In section 4 we discuss general feedfonvard nets in the local linear 
approximation, while we summarize our results in section 5. 

2. me master equation and the Fokker-Planck approximation 

The standard approach to supervised training of a feed-forward network is the 
backpropagation of errors as devised by Rumelhart and McClelland [2]. Although 
the consensus is that this method is prohibitively slow for real world applications, it 
is still widely used and is of great conceptual interest. The method is based on the 
minimization of overall network error on a training set of examples, and employs a 
gradient descent scheme to obtain that goal. Standard practice, however, invokes a 
momentum-smoothed, recursive gradient descent, as described in [2]. This defines a 
stochastic dynamical system on the weight space. In the following we shall confine 
ourselves to treating the simple case without momentum smoothing: 
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in which the instantaneous cost function E(n) = $(y(") - F,,,( , , )(Z(*)))~ is computed 
from a sample of the training set (d"),y(")) E {(z,y)} and the current transfer 
function F,,,(")(.) implemented by the N network weights. The total training set cost 
(or error) is given by E = Et=, E(-) for a training set comprising p examples. 
The dynamics implicit in (1) is Markovian, so the probability distribution over the 
dynamical variable w obeys the one-step master equation [6]: 

dw; [W(w,w')P(")(w') - W(w',w)P(")(w)] (2) 

where W(w, w') is the probability for going from w' to w in a single step. Following 
[6), we average the equation of motion for the weighs over a mesoscopic ainmcale 
T which is much larger than the single-step time while still being much smaller than 
the time scale on which the distribution P( w) can change appreciably. This provides 
us with the following modscation of (1): 

J 5  P+f"(w) - l=+)(w) = 

'RI derive the Fokker-Planck approximation to (2), we split the right-hand side of (3) 
into a coherent part and a fluctuating part: 

with f j  = ( -aE/awj)  being the average force as computed from the training set. 
The fluctuating part, being a sum of T > 1 independent terms, can be replaced by a 
zero mean Gaussian variable, 6,, with covariance matrix 

T 7 ) 2 0 : j , ( W )  E T?)'((fjn)- f;)(fir) - f;,)). (5) 

The mane  grained dynamics is now of the Langevin type, and we can write down 
the Rkker-Planck equation governing the dynamics of the probability distribution at 
the coarse grained time scale. This standard procedure yields [6] 

(6) 

Note that, along with T ,  a factor of has been absorbed in the new time variable 
t. This Fokker-Planck equation is different from that obtained by Radons d a1 [5] 
in the form of the second term. In 151 the factor oZ(w) is replaced by the second 
moment matrix of the fluctuating part rather than the second cumulant appearing 
here. This difference arose because &dons et a1 employed a direct expansion of the 
master equation in terms of q (instead of an expansion in the mesoscopic time scale 
7). 
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According to the theory of stochastic processes 161, an essential prerequisite for the 
expansion of the master equation is to split the dynamical variable into a coherent part, 
which over times of order T undergoes changes proportional to 7, and a fluctuating 
part which, over a similar period of time, grows as 7' where U < 1. In most 
applications, U = 4, implying that the variance of the fluctuating part grow as T. 
'Ibis establishes the role that the two parts finally play in the set-up of the kkker- 
Planck equation; the coherent part governs the lirst term (the drifl term), while the 
variance of the fluctuating part governs the second term (the difuusion term). 

3. Analytical solution of a ID example and comparison with the Fokker-Planck 
solution 

It is not surprising that a full timedependent solution of the Fokker-Planck equation 
cannot be. found in closed form unless the functions $ ( w )  and a j j , ( w )  are especially 
simple. The stationary solution for the one-dimensional case, however, can be h t t e n  
down quite generally: 

where C is the normalization constant. If d ( w )  is identically zero, the distribution 
(7) collapses into a delta-function centred at the deterministic solution w = w* ,  
where fo(w') = 0. Note that the stationary distribution is ersenfia& singular in the 
parameter 0. Jf d ( w )  > 0 and is independent of w, the resulting distribution is 
Gibbsian (Le. the probability of a specific microstate w depends solely on the cost of 
the state and the temperature): 

P(')(w) - e q ( - p E ( w ) )  ( p  = 2 /vuz ) .  (8) 

The quantity t)u2/2 then plays the role of temperature which would have to be uniform 
over the entire w-space, to ensure thermal equilibrium. The generic case, however, 
is that (7) represents non-Gibbsian distributions. As we shall see in the next section 
on the multi-dimensional case the Gibbsian distribution is only recovered in the case 
in which the error function is isotropic in wspace. 

We consider a simple neural network learning problem, namely a constant output 
net (F,,,(r) = w) trained on noisy examples (y, = U,, with U, a random variable). 
The cost function in this case is given by 

,=I 

We choose this example because the probability distribution P ' " ) ( w )  can be derived 
exactly using simple analytical means. This, in turn, will enable us to make a direct 
comparison between the exact solution and the solution obtained from the Fokker- 
Planck equation. 

The backpropagation dynamics of this problem is derived from 
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leading to the stochastic process 

&+1) - J") = -Il(w(n) - 1 
where the U(") are assumed to be independent and identically distributed Gaussian 
noise impulses with zero mean and given variance U:. 

The solution, for a given history of U(") and starting at do), is given by 

The probability distribution of w at a given instant of the process is a function of the 
initial value ut(") and can be computed from 

where 

Note that since g is linear in the random variables U("), we can use the expression 

to integrate over the random variables. 
[I - (1 - q)"]/[l - (1 - Q ) ~ ] ,  we obtain 

Introducing the function c ~ ( ~ ) ( q )  = 

where 

Equations (16)-(19), being exact, hold for all n. The stationary distribution can now 
be obtained by letting n -, 00: 
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We shall now compare the foregoing results with those following from the Fokker- 
Planck equation (7). With fU(w) = -w and d ( w )  = U:, equation (6) can readily 
be integrated to give [6] 
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where 

(22) 
w*(t) = w(Qe-* e*(t) = -(I vu5 -e-zt). 

2 

And the corresponding stationary distribution follows by letting t -+ 03: 

consistent with the general solution (16)-(19). A comparison with the Fokker-Planck 
results is now straightfonvard. lb make the desired transition (from a discrete picture, 
in terms of n, to a continuous picture in terms of t) one must take n > 1 and q << 1, 
so that the process entails a large number of steps, each step resulting in a small 
change in the variable w.  Equations (18)-(19) may then be written as 

w * ( n )  , (U) , -v  U! 2 +a(~-e -~V”) .  (24) 

With qn corresponding to t ,  the WO descriptions are clearly identical; we note that 
for relarively low n (such that while n > 1, qn < I), equations (24) reduce to 

(25) 2 2 2  ,*.(n) - ,(U) -,#) qn U, rr: q uen 

so that both drift and diffmion in the variable w(” )  are proportional to the first power 
in n. Recogpizing that n in this short duration of the process is a measure of the 
mesoscopic time 7, equations (25) are in agreement with expressions (4)-(5) that 
form the basis of our passage from the master equation (2) to the Fokker-Planck 
equation (6). 

In contrast, Radons et a1 [5] carried out an expansion of the single-step master 
equation (2) in powers of q, without invoking a mesoscopic time wale T (which in a 
sense amounts to utting 7 = l), with the result that in expression (6) they retained 

in this section, one cannot obtain a full, time-dependent solution in closed form. The 
stationary solution, however, turns out to be 

the term ( p ( w ) )  ? as well as u2(w) .  Applying their equation to the problem studied 

which may be compared with the exact result (23). 

which can be evaluated exactly from the evolution equations [6! 
As regards time dependence, we may look at the mean and the variance of w, 
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and 

(W d 
-02(w) dt = 2((w - ( w ) ) a ~ ( W ) )  t (Qz) 

where q ( w )  = -w, while a2(w)  = qua in our version of the theory but q(w2+u:)  
in the version of Radons et af. Integrating (27) and (B), we End that, whereas (w) 
in either case is given by &)e-', u 2 ( w )  in the case of Radons et d turns out to be 

(29) [uz(w)lR = ;qu;[l -e+-+] + (~(9) 2 [e - ( Z - q ) t  - e-zt] 

U ;q&- e-zt] + (w("))Zqte-Z' (q K 1). (30) 
Comparing p929)-(30) with (22) and (24), we find that u2(w) following from the 
formulation of Radons el d possesses a spurious dependence on the initial conditions 
which persists even if U: is set equal to zero. Thus, even if the stochasticity of the 
process is removed, the variable w continues to be statistical in character. However, 
since both approaches are approximate, we cannot rule out the possibility that there 
exist noise models, e.g. models violating our assumption of a finite variance of 
the noise, for which the Fokker-Planck equation of [SI provides a more accurate 
description of the relaxation phenomena. 

Before. closing this section we note that, since the dL@sion term uz(w) for the 
problem studied here was independent of w, the stationary solution was expected 
to be Gibbsian. A closer look at equation (20) or (23) reveals that the solution is 
indeed Gibbsian although, in view of the fact that the drift term is linear (and hence 
the cost-function quadratic) in w, the final distribution takes the form of a Gaussian 
distribution. 

4. General feedlomad networks 

As an application of the Fokker-Planck scheme in the multivariate case, we consider 
now the case of a general feedfonvard network close to the conclusion of the training 
process. In this regime the network is supposedly fairly well settled close to a 
minimum of the error function. Hence, we can make a local linear approximation 
valid for small fluctuations around the minmumt. We will consider a standard 
feedforward net parametrized by a set of N weights w, implementing a real-valued 
function of L input variables x: 

?./(r) = F,(Z). (31) 

y(&) = F,.(z(a)) +LA.). (32) 

'Ibis &dent network is trained on a database generated by a teacher network with 
weights w*: 

Further we assume that the noise Y is independent of the input +. The cost function, 
E, is the sum of squares as previously. The Fokker-Planck equation is specified by 
the first two moments of the distribution of the backpropagation gradients 

t Note that in Ihe vicinity of lhe maximum of the slationaly distribution, i.e. where fo = 0, the two 
forms ol the Fokker-Planck equation agree. 
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and 
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We compute the moments to 6rst order around the local minimum: 

ff = z A j j , ( w j ,  - w;,) 

oz., If = o:Ajj, (36) 

(35) 
j' 

and 

where Ajj, is the correlation mahix of the random derivatives of the network output: 

and a: is the variance of the additive noise. The resulting Fokker-Planck equation 
is then found to be 

The stationary solution for a Fokker-Planck equation of this form is given by a simple 
isotropic Gaussian [6]: 

N 
P ( w )  = z- iexp 

j = 1  
(39) 

where P = 2/qo$ and 2 is the normalization constant. It is quite remarkable 
that the characteristics of the cost function, Ai,,, are totally absent from the close 
neighbourhood of the peak of the distribution. The physical reason is that the 
geometric stmcture of the average cost function, which determines the drift term, is 
exactly 'cancelled' by the structure of the diffusion term. Incidentally we note that 
the isotropy of the weight covariance matrix has been derived by quite different means 
by Widrow and Stearns for the so-called LMS (least mean squares) scheme [I. 

A Gibbs distribution, on the other hand, is for the present problem, and in the 
local linear approximation, given by 

P ( ~ ) = Z - ' e x p ( - ~ ~ A ~ ~ . ( w - w ' ) ~ ( w - w ' ) ~ ,  2 _., (40) 
11 

We note that we obtain a Gibbs distribution only in the special case where the A 
matrix is itself kotropic ie. proportional to the unit. 
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S. Concluding remarks 

It has been shown that the standard Fokker-Planck approach of statistical physics can 
be a valuable tool in understanding learning dynamics, in the limit of slow training. 
We have pointed out that the stationary distribution in the weight space of a neural 
network, after training by backpropagation, is typically non-Gibbsian. In the one- 
dimensional case the general form of the stationary distribution can be given. In the 
multivariate case we found, surprisingly, that the peak of the stationary distribution 
is isotropic. 
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